Title: | The Echelon Analysis and the Detection of Spatial Clusters using Echelon Scan Method |
---|---|
Description: | Functions for the echelon analysis proposed by Myers et al. (1997) <doi:10.1023/A:1018518327329>, and the detection of spatial clusters using echelon scan method proposed by Kurihara (2003) <doi:10.20551/jscswabun.15.2_171>. |
Authors: | Fumio Ishioka [aut, cre] |
Maintainer: | Fumio Ishioka <[email protected]> |
License: | GPL-3 |
Version: | 0.3.0 |
Built: | 2025-03-04 04:48:46 UTC |
Source: | https://github.com/cran/echelon |
The echebin
function detects spatial clusters using the echelon spatial scan statistic with a Binomial model.
echebin(echelon.obj, cas, ctl, K = length(cas)/2, Kmin = 1, n.sim = 99, cluster.type = "high", cluster.legend.pos = "bottomleft", dendrogram = TRUE, cluster.info = FALSE, coo = NULL, ...)
echebin(echelon.obj, cas, ctl, K = length(cas)/2, Kmin = 1, n.sim = 99, cluster.type = "high", cluster.legend.pos = "bottomleft", dendrogram = TRUE, cluster.info = FALSE, coo = NULL, ...)
echelon.obj |
An object of class |
cas |
A numeric (integer) vector of case counts. |
ctl |
A numeric (integer) vector of control counts. |
K |
Maximum cluster size. If |
Kmin |
Minimum cluster size. |
n.sim |
The number of Monte Carlo replications used for significance testing of detected clusters. If set to 0, significance is not assessed. |
cluster.type |
A character string specifying the cluster type. If |
cluster.legend.pos |
The location of the legend on the dendrogram. (See |
dendrogram |
Logical. If TRUE, draws an echelon dendrogram with the detected clusters. |
cluster.info |
Logical. If TRUE, returns detailed results of the detected clusters. |
coo |
An array of (x, y) coordinates for the region centroids to plot a cluster map. |
... |
Related to dendrogram drawing. (See the help for |
clusters |
Each detected cluster. |
scanned.regions |
A region list of all scanning processes. |
simulated.LLR |
Monte Carlo samples of the log-likelihood ratio. |
The function echebin
requires either cas
or ctl
.
Population is defined as the sum of cas
and ctl
.
Typical values of n.sim
are 99, 999, 9999, ...
Fumio Ishioka
[1] Kulldorff M, Nagarwalla N. (1995). Spatial disease clusters: Detection and inference. Statistics in Medicine, 14, 799–810.
[2] Kulldorff M. (1997). A spatial scan statistic. Communications in Statistics: Theory and Methods, 26, 1481–1496.
echelon
for the echelon analysis.
echepoi
for cluster detection based on echelons using Poisson model.
##Hotspot detection for non-white birth of North Carolina using echelon scan #Non-white birth from 1974 to 1984 (case data) library(spData) data("nc.sids") nwb <- nc.sids$NWBIR74 + nc.sids$NWBIR79 #White birth from 1974 to 1984 (control data) wb <- (nc.sids$BIR74 - nc.sids$NWBIR74) + (nc.sids$BIR79 - nc.sids$NWBIR79) #Hotspot detection based on Binomial model nwb.echelon <- echelon(x = nwb/wb, nb = ncCR85.nb, name = row.names(nc.sids)) echebin(nwb.echelon, cas = nwb, ctl = wb, K = 20, main = "Hgih rate clusters", ens = FALSE) text(nwb.echelon$coord, labels = nwb.echelon$regions.name, adj = -0.1, cex = 0.7) #Detected clusters and neighbors map #XY coordinates of each polygon centroid point NC.coo <- cbind(nc.sids$lon, nc.sids$lat) echebin(nwb.echelon, cas = nwb, ctl = wb, K = 20, coo = NC.coo, dendrogram = FALSE) ##Detected clusters map #Here is an example using the sf class "sf" nwb.clusters <- echebin(nwb.echelon, cas = nwb, ctl = wb, K = 20, dendrogram = FALSE) MLC <- nwb.clusters$clusters[[1]] Secondary <- nwb.clusters$clusters[[2]] cluster.col <- rep(0,times=length(nwb)) cluster.col[MLC$regionsID] <- 2 cluster.col[Secondary$regionsID] <- 3 library(sf) nc <- st_read(system.file("shape/nc.shp", package = "sf")) plot(nc$geometry, col = cluster.col, main = "Detected high rate clusters") text(st_coordinates(st_centroid(st_geometry(nc))), labels = nc$CRESS_ID, cex =0.75) legend("bottomleft", c(paste("1- p-value:", MLC$p), paste("2- p-value:", Secondary$p)), text.col = c(2,3))
##Hotspot detection for non-white birth of North Carolina using echelon scan #Non-white birth from 1974 to 1984 (case data) library(spData) data("nc.sids") nwb <- nc.sids$NWBIR74 + nc.sids$NWBIR79 #White birth from 1974 to 1984 (control data) wb <- (nc.sids$BIR74 - nc.sids$NWBIR74) + (nc.sids$BIR79 - nc.sids$NWBIR79) #Hotspot detection based on Binomial model nwb.echelon <- echelon(x = nwb/wb, nb = ncCR85.nb, name = row.names(nc.sids)) echebin(nwb.echelon, cas = nwb, ctl = wb, K = 20, main = "Hgih rate clusters", ens = FALSE) text(nwb.echelon$coord, labels = nwb.echelon$regions.name, adj = -0.1, cex = 0.7) #Detected clusters and neighbors map #XY coordinates of each polygon centroid point NC.coo <- cbind(nc.sids$lon, nc.sids$lat) echebin(nwb.echelon, cas = nwb, ctl = wb, K = 20, coo = NC.coo, dendrogram = FALSE) ##Detected clusters map #Here is an example using the sf class "sf" nwb.clusters <- echebin(nwb.echelon, cas = nwb, ctl = wb, K = 20, dendrogram = FALSE) MLC <- nwb.clusters$clusters[[1]] Secondary <- nwb.clusters$clusters[[2]] cluster.col <- rep(0,times=length(nwb)) cluster.col[MLC$regionsID] <- 2 cluster.col[Secondary$regionsID] <- 3 library(sf) nc <- st_read(system.file("shape/nc.shp", package = "sf")) plot(nc$geometry, col = cluster.col, main = "Detected high rate clusters") text(st_coordinates(st_centroid(st_geometry(nc))), labels = nc$CRESS_ID, cex =0.75) legend("bottomleft", c(paste("1- p-value:", MLC$p), paste("2- p-value:", Secondary$p)), text.col = c(2,3))
The echelon
function divides the study area into structural entities, called 'echelons', based on neighbor information and draws a dendrogram.
echelon(x, nb, dendrogram = TRUE, name = NULL, main = NULL, ylab = NULL, yaxes = TRUE, ylim = NULL, xaxes = FALSE, xdper = c(0, 1), dmai = NULL, col = 1, lwd = 1, symbols = 4, cex.symbols = 1, col.symbols = 4, ens = TRUE, adj.ens = 1, cex.ens = 0.8, col.ens = 1, profiles = FALSE, nb.check = TRUE)
echelon(x, nb, dendrogram = TRUE, name = NULL, main = NULL, ylab = NULL, yaxes = TRUE, ylim = NULL, xaxes = FALSE, xdper = c(0, 1), dmai = NULL, col = 1, lwd = 1, symbols = 4, cex.symbols = 1, col.symbols = 4, ens = TRUE, adj.ens = 1, cex.ens = 0.8, col.ens = 1, profiles = FALSE, nb.check = TRUE)
x |
A numeric vector containing data values. |
nb |
Neighbor information data: an object of class |
name |
Region names. if NULL, it is assigned |
dendrogram |
Logical. if TRUE, draws an echelon dendrogram. |
main |
Related to dendrogram drawing. The main title for the dendrogram. |
ylab |
Related to dendrogram drawing. The title for the y-axis. |
yaxes |
Related to dendrogram drawing. Logical. if TRUE, draws the y-axis. |
ylim |
Related to dendrogram drawing. If not specified, the y-axis scale is set to |
xaxes |
Related to dendrogram drawing. Logical. if TRUE, draws the x-axis. |
xdper |
Related to dendrogram drawing. The percentage of the x-axis to display, specified in [0, 1]. |
dmai |
Related to dendrogram drawing. A numeric vector of the form |
col |
Related to dendrogram drawing. The line color of the dendrogram. |
lwd |
Related to dendrogram drawing. The line width of the dendrogram. |
symbols |
Related to dendrogram drawing. An integer specifying a symbol or a single character. If integer, it corresponds to |
cex.symbols |
Related to dendrogram drawing. A magnification factor for the plotting symbols. |
col.symbols |
Related to dendrogram drawing. The color for the plotting symbols. |
ens |
Related to dendrogram drawing. Logical. if TRUE, draw the labels of echelon numbers. |
adj.ens |
Related to dendrogram drawing. Adjusts the position of echelon number labels (see |
cex.ens |
Related to dendrogram drawing. A magnification factor for the echelon number labels. |
col.ens |
Related to dendrogram drawing. The color for the echelon number labels. |
profiles |
Logical. If TRUE, returns the echelon profiles result (see [2] for details). |
nb.check |
Logical. if TRUE, checks for errors in the neighbor information data. |
The echelon
function returns an object of class echelon
, which contains the following components:
Table |
A summary of each echelon. |
Echelons |
The regions that make up each echelon. |
Any NA
values in x
are replaced with the minimum value of x
.
The functions Sf::st_read
and spdep::poly2nb
are helpful for creating the object specified in the nb
argument.
Fumio Ishioka
[1] Myers, W.L., Patil, G.P. and Joly, K. (1997). Echelon approach to areas of concern in synoptic regional monitoring. Environmental and Ecological Statistics, 4, 131–152.
[2] Kurihara, K., Myers, W.L. and Patil, G.P. (2000) Echelon analysis of the relationship between population and land cover patter based on remote sensing data. Community ecology, 1, 103–122.
echepoi
and echebin
for cluster detection based on echelons.
##Echelon analysis for one-dimensional data with 25 regions #A weights matrix one.nb <- matrix(0,25,25) one.nb[1,2] <- 1 for(i in 2:24) one.nb[i,c(i-1,i+1)] <- c(1,1) one.nb[25,24] <- 1 #25 random values one.dat <- runif(25) * 10 #Echelon analysis echelon(x = one.dat, nb = one.nb) ##Echelon analysis for SIDS data for North Carolina #Mortality rate per 1,000 live births from 1974 to 1984 library(spData) data("nc.sids") SIDS.cas <- nc.sids$SID74 + nc.sids$SID79 SIDS.pop <- nc.sids$BIR74 + nc.sids$BIR79 SIDS.rate <- SIDS.cas * 1000 / SIDS.pop #Echelon analysis SIDS.echelon <- echelon(x = SIDS.rate, nb = ncCR85.nb, name = row.names(nc.sids), symbols = 12, cex.symbols = 1.5, ens = FALSE) text(SIDS.echelon$coord, labels = SIDS.echelon$regions.name, adj = -0.1, cex = 0.7) #Echelon Profiles echelon(x = SIDS.rate, nb = ncCR85.nb, profiles = TRUE)
##Echelon analysis for one-dimensional data with 25 regions #A weights matrix one.nb <- matrix(0,25,25) one.nb[1,2] <- 1 for(i in 2:24) one.nb[i,c(i-1,i+1)] <- c(1,1) one.nb[25,24] <- 1 #25 random values one.dat <- runif(25) * 10 #Echelon analysis echelon(x = one.dat, nb = one.nb) ##Echelon analysis for SIDS data for North Carolina #Mortality rate per 1,000 live births from 1974 to 1984 library(spData) data("nc.sids") SIDS.cas <- nc.sids$SID74 + nc.sids$SID79 SIDS.pop <- nc.sids$BIR74 + nc.sids$BIR79 SIDS.rate <- SIDS.cas * 1000 / SIDS.pop #Echelon analysis SIDS.echelon <- echelon(x = SIDS.rate, nb = ncCR85.nb, name = row.names(nc.sids), symbols = 12, cex.symbols = 1.5, ens = FALSE) text(SIDS.echelon$coord, labels = SIDS.echelon$regions.name, adj = -0.1, cex = 0.7) #Echelon Profiles echelon(x = SIDS.rate, nb = ncCR85.nb, profiles = TRUE)
The echepoi
function detects spatial clusters using the echelon spatial scan statistic with a Poisson model.
echepoi(echelon.obj, cas, pop = NULL, ex = NULL, K = length(cas)/2, Kmin = 1, n.sim = 99, cluster.type = "high", cluster.legend.pos = "bottomleft", dendrogram = TRUE, cluster.info = FALSE, coo = NULL, ...)
echepoi(echelon.obj, cas, pop = NULL, ex = NULL, K = length(cas)/2, Kmin = 1, n.sim = 99, cluster.type = "high", cluster.legend.pos = "bottomleft", dendrogram = TRUE, cluster.info = FALSE, coo = NULL, ...)
echelon.obj |
An object of class |
cas |
A numeric (integer) vector of case counts. |
pop |
A numeric (integer) vector for population. |
ex |
A numeric vector for expected case counts. |
K |
Maximum cluster size. If |
Kmin |
Minimum cluster size. |
n.sim |
The number of Monte Carlo replications used for significance testing of detected clusters. If set to 0, significance is not assessed. |
cluster.type |
A character string specifying the cluster type. If |
cluster.legend.pos |
The location of the legend on the dendrogram. (See |
dendrogram |
Logical. If TRUE, draws an echelon dendrogram with the detected clusters. |
cluster.info |
Logical. If TRUE, returns detailed results of the detected clusters. |
coo |
An array of (x, y) coordinates for the region centroids to plot a cluster map. |
... |
Related to dendrogram drawing. (See the help for |
clusters |
Each detected cluster. |
scanned.regions |
A region list of all scanning processes. |
simulated.LLR |
Monte Carlo samples of the log-likelihood ratio. |
The function echepoi
requires either pop
or ex
.
Typical values of n.sim
are 99, 999, 9999, ...
Fumio Ishioka
[1] Kulldorff M. (1997). A spatial scan statistic. Communications in Statistics: Theory and Methods, 26, 1481–1496.
[2] Ishioka F, Kawahara J, Mizuta M, Minato S, and Kurihara K. (2019) Evaluation of hotspot cluster detection using spatial scan statistic based on exact counting. Japanese Journal of Statistics and Data Science, 2, 241–262.
echelon
for the echelon analysis.
echebin
for cluster detection based on echelons using Binomial model.
##Hotspot detection for SIDS data of North Carolina using echelon scan #Mortality rate per 1,000 live births from 1974 to 1984 library(spData) data("nc.sids") SIDS.cas <- nc.sids$SID74 + nc.sids$SID79 SIDS.pop <- nc.sids$BIR74 + nc.sids$BIR79 SIDS.rate <- SIDS.cas * 1000 / SIDS.pop #Hotspot detection based on Poisson model SIDS.echelon <- echelon(x = SIDS.rate, nb = ncCR85.nb, name = row.names(nc.sids)) echepoi(SIDS.echelon, cas = SIDS.cas, pop = SIDS.pop, K = 20, main = "Hgih rate clusters", ens = FALSE) text(SIDS.echelon$coord, labels = SIDS.echelon$regions.name, adj = -0.1, cex = 0.7) #Detected clusters and neighbors map #XY coordinates of each polygon centroid point NC.coo <- cbind(nc.sids$lon, nc.sids$lat) echepoi(SIDS.echelon, cas = SIDS.cas, pop = SIDS.pop, K = 20, coo = NC.coo, dendrogram = FALSE) ##Detected clusters map #Here is an example using the sf class "sf" SIDS.clusters <- echepoi(SIDS.echelon, cas = SIDS.cas, pop = SIDS.pop, K = 20, dendrogram = FALSE) MLC <- SIDS.clusters$clusters[[1]] Secondary <- SIDS.clusters$clusters[[2]] cluster.col <- rep(0,times=length(SIDS.rate)) cluster.col[MLC$regionsID] <- 2 cluster.col[Secondary$regionsID] <- 3 library(sf) nc <- st_read(system.file("shape/nc.shp", package = "sf")) plot(nc$geometry, col = cluster.col, main = "Detected high rate clusters") text(st_coordinates(st_centroid(st_geometry(nc))), labels = nc$CRESS_ID, cex =0.75) legend("bottomleft", c(paste("1- p-value:", MLC$p), paste("2- p-value:", Secondary$p)), text.col = c(2,3))
##Hotspot detection for SIDS data of North Carolina using echelon scan #Mortality rate per 1,000 live births from 1974 to 1984 library(spData) data("nc.sids") SIDS.cas <- nc.sids$SID74 + nc.sids$SID79 SIDS.pop <- nc.sids$BIR74 + nc.sids$BIR79 SIDS.rate <- SIDS.cas * 1000 / SIDS.pop #Hotspot detection based on Poisson model SIDS.echelon <- echelon(x = SIDS.rate, nb = ncCR85.nb, name = row.names(nc.sids)) echepoi(SIDS.echelon, cas = SIDS.cas, pop = SIDS.pop, K = 20, main = "Hgih rate clusters", ens = FALSE) text(SIDS.echelon$coord, labels = SIDS.echelon$regions.name, adj = -0.1, cex = 0.7) #Detected clusters and neighbors map #XY coordinates of each polygon centroid point NC.coo <- cbind(nc.sids$lon, nc.sids$lat) echepoi(SIDS.echelon, cas = SIDS.cas, pop = SIDS.pop, K = 20, coo = NC.coo, dendrogram = FALSE) ##Detected clusters map #Here is an example using the sf class "sf" SIDS.clusters <- echepoi(SIDS.echelon, cas = SIDS.cas, pop = SIDS.pop, K = 20, dendrogram = FALSE) MLC <- SIDS.clusters$clusters[[1]] Secondary <- SIDS.clusters$clusters[[2]] cluster.col <- rep(0,times=length(SIDS.rate)) cluster.col[MLC$regionsID] <- 2 cluster.col[Secondary$regionsID] <- 3 library(sf) nc <- st_read(system.file("shape/nc.shp", package = "sf")) plot(nc$geometry, col = cluster.col, main = "Detected high rate clusters") text(st_coordinates(st_centroid(st_geometry(nc))), labels = nc$CRESS_ID, cex =0.75) legend("bottomleft", c(paste("1- p-value:", MLC$p), paste("2- p-value:", Secondary$p)), text.col = c(2,3))